
Journal of Cyber Forensics and Security (CYFORS) ISSN 3032-5870
Vol.3, No.1 (2026)

IMPLEMENTATION OF HIGH AVAILABILITY WITH NGINX LOAD BALANCER
AND GALERA CLUSTER

Dino Ananda Saputra1), Indrawan2), Chaerul Umam3), Muhammad Aditia4), Anas Nasrulloh5), Irwan
Siswanto6)

1,2,3,4) Information Technology, Institute Technology of South Tangerang

5,6) Information System, Institute Technology of South Tangerang
email : : dino.ananda22@gmail.com1), indrawan.gcgarasi@gmail.com2), chaerulumam1989@gmail.com3),

aditia22@gmail.com4), anas@itts.ac.id5), irwansiswanto@itts.ac.id6)

Abstract
High Availability (HA) systems play an important role in ensuring that critical applications continue to run despite
server failures, hardware failures, or cyberattacks. This study discusses the implementation of the HA system using
Nginx as the load balancer and the Galera Cluster for the MariaDB database. The main goal is to optimize system
performance and minimize downtime during traffic spikes or system outages. By leveraging Nginx for traffic
distribution and Galera Cluster for real-time data replication, this architecture provides high fault tolerance and
reliable service availability. This study evaluates the system's ability to deal with traffic spikes, maintain service
continuity, and be resistant to hardware and software interference. The system is designed to meet modern SLA
standards with a minimum uptime of 99.95%. In addition, the implementation of a failover mechanism on
applications and databases allows the system to continue operating normally even if there is a disruption to one
of the components.
Keywords :
High availbility, nginx, load balancing, galera, mariadb, cluster.

Introduction

In the ever-growing digital era, organizations rely
heavily on application systems to run daily operations
and serve users optimally. A system that is unable to
cope with surging demand or fails to maintain service
availability will lead to economic losses, reputational
decline, and loss of customer trust. According to
Andrew S. Tanenbaum in his book Distributed
Systems: Principles and Paradigms (2007), one of the
main pillars of modern systems is availability, which
is the ability of the system to remain accessible
despite failures in some of its components.

The main problem that is often faced is downtime,
which is the time when the system is inaccessible to
the user. Downtime can be caused by a variety of
factors, such as:

A surge in user demand that the existing
infrastructure is unable to handle. As explained by
Rajkumar Buyya in Cloud Computing: Principles and
Paradigms (2011), load spikes often occur in
applications that are dynamic in nature and require

optimal load distribution to avoid data traffic
bottlenecks.

Hardware or software failure, where a physical or
virtual server is damaged so that the system cannot
run properly.

Cyber attacks such as Distributed Denial of Service
(DDoS) or exploits of vulnerabilities that can cause
the system to malfunction. In this context, the
protection of servers is very important as described in
Web Application Security by Bryan Sullivan and
Vincent Liu (2011).

To overcome these challenges, the implementation of
the High Availability (HA) System is the main need.
HA refers to the system's ability to minimize
downtime by supporting continuous operation despite
disruptions. One of the key components in HA
implementation is Load Balancing. Nginx, as one of
the load balancer technologies, allows the distribution
of traffic to multiple backend servers. This ensures
that user requests are not centralized on a single
server, which can lead to bottlenecks or complete
failures. As mentioned by Clément Nedelcu in his
book Nginx HTTP Server (2010), "Nginx excels in

Journal of Cyber Forensics and Security (CYFORS) ISSN 3032-5870
Vol.1, No.2 (2024)

handling large numbers of concurrent connections,
making it ideal for high-traffic applications."

In addition, other critical aspects of the HA system
are

database replication. Galera Cluster for MariaDB
provides a multi-master replication solution that
supports real-time data synchronization. This
technology allows each node in the cluster to act as a
master, thereby improving scalability and failure
tolerance. According to Baron Schwartz in High
Performance MySQL (2012), "Cluster-based
database solutions provide fault tolerance and ensure
data integrity during failures, making them ideal for
HA deployments."

Through the combination of Nginx as a load balancer
and MariaDB's Galera Cluster for database
replication, the system can provide high reliability in
handling demand spikes while ensuring data integrity.
This implementation not only reduces the impact of
downtime but also provides resilience to cyberattacks
and hardware failures. With this approach,
organizations can more effectively manage their
technology infrastructure to support the ever-
increasing operational needs.

Departing from this case, the author came up with the
idea to create a system that can maintain Availability
which is outlined in the form of this journal entitled
"Implementation of High Availability System with
the Utilization of Nginx Load Balancing and Galera
Cluster MariaDB Database"

Literature Review

1. High Availability (HA) System

High Availability (HA) is a concept that focuses on
ensuring that the system can continue to operate
despite disruptions or damage to some of its
components. Tanenbaum and Van Steen (2007) in the
book Distributed Systems: Principles and Paradigms
explain that systems designed with HA principles
must have redundancy and the ability to detect and
recover from failures quickly. The system also relies
on three main aspects: availability, reliability, and
scalability. The combination of these three provides
the basis for keeping the service running despite an
outage in one of the subsystems.

2. Load Balancing with Nginx

Load balancing is a technique of distributing network
traffic or user requests to multiple backend servers to
prevent overloading on a single server. According to
Nedelcu (2010) in Nginx HTTP Server, Nginx is one
of the most efficient solutions in handling high traffic
thanks to its ability to manage thousands of

connections simultaneously with minimal resource
consumption. Nginx works with algorithms such as
Round Robin, Least Connections, and IP Hash to
ensure that workloads are optimally distributed to
each server. In addition, the failover feature on Nginx
provides a guarantee that if one of the servers fails,
traffic will be automatically redirected to another
server in the pool.

Figure 2. Nginx Load Balancing

a. Round Robin

Round Robin is the default algorithm in Nginx that
distributes requests to the backend server in turn.
Each server gets one request evenly in a recurring
cycle, regardless of server status or load.

According to Nedelcu (2010) in Nginx HTTP Server,
"Round Robin is a simple and effective load
balancing method for distributing requests equally
across all backend servers. It is ideal for systems with
equally capable servers and uniform traffic."That is
why

Advantages:

• The implementation is simple and easy to
understand.

• Suitable for infrastructure with servers that
have uniform specifications.

Disadvantages:

• It doesn't pay attention to the actual load on
the backend server, which can cause a bottleneck if
one of the servers has lower performance.

b. IP Hash IP Hash is an algorithm that
distributes requests based on the hash of the client's
IP address. This algorithm ensures that requests from
the same IP will always be routed to the same server,
unless that server is unavailable.

Nedelcu (2010) also mentions that, "The IP Hash
method is particularly useful for session persistence,

Journal of Cyber Forensics and Security (CYFORS) ISSN 3032-5870
Vol.3, No.1 (2026)

where the application relies on the same backend
server to handle consecutive requests from the same
client."That is why

Advantages :

• It supports session stickiness, making it
suitable for applications that store user sessions on
specific servers.

• Consistency in handling requests from the
same client.

Disadvantages :

• Load distribution is less than optimal,
especially if the client's IP distribution is uneven.

c. Least Connections

Least Connections is an algorithm that directs
requests to the server with the least active
connections. This algorithm takes into account server
workload when distributing requests, making it more
efficient than Round Robin in systems with non-
uniform request traffic.

Schwartz et al. (2012) in High Performance MySQL
explain that, "The Least Connections method
effectively balances the workload by considering the
number of active connections, preventing overload
and improving efficiency in environments with
variable traffic patterns."

Advantages:

• Optimal for servers with different capacities
or varied workloads.

• Prevents certain servers from being
overloaded.

Disadvantages:

• Requires active monitoring of each server's
active connection.

• It does not take into account the duration of
each connection or the processing time of the request.
Comparison of the Three Algorithms:

• Round Robin: Suitable for simple systems
with uniform servers and even traffic.

IP Hash: Ideal for applications that require session
consistency or have session data stored on a specific
server. Least Connections: Best suited for systems

with varying workloads or servers with different
specifications.

 3. Database Replication with Galera Cluster

Galera Cluster is a multi-master replication-based
database clustering solution that supports consistent
data synchronization between nodes. Schwartz et al.
(2012) in High Performance MySQL explain that one
of the main advantages of Galera Cluster is its multi-
master architecture that allows all active nodes to
receive read and write requests. With a synchronous
replication model, data updated on one node is
immediately replicated to another node, thus
guaranteeing data consistency even if one of the
nodes fails.

Figure 3. MariaDB Galera Cluster

4. Failure Management and Recovery

Another aspect that is no less important is failure
management. Buyya et al. (2011) in Cloud
Computing: Principles and Paradigms emphasize the
importance of integrating monitoring and failure
detection mechanisms into HA systems. Active
monitoring ensures that every component in the
system is monitored in real-time, so failures can be
identified early to minimize their impact.

5. System Security and Resiliency

Security is also an important factor in HA systems,
especially to protect infrastructure from threats such
as Distributed Denial of Service (DDoS) attacks and
vulnerability exploits. Sullivan and Liu (2011) in
Web Application Security mentioned that the
implementation of application firewalls, data
encryption, and strong authentication is necessary to
keep the system secure and available.

6. HA Implementation for Modern
Applications

Various studies and implementations show that
combining load balancing with database replication is

Journal of Cyber Forensics and Security (CYFORS) ISSN 3032-5870
Vol.1, No.2 (2024)

an effective solution for building HA systems. A
Combination of Nginx and

Journal Of High Availability System

Galera Cluster has proven to deliver high efficiency
and scalability, making it an ideal choice for
applications with dynamic demand levels. With the
right configuration, this architecture can significantly
reduce downtime and provide a more reliable user
experience.

Figure 4. High Availability System

Research Methods

To build this High Availability System, it is
necessary to design excess infrastructure that has
been running before.

In this case, the application is set up as shown below:

Figure 5. Stand Alone Application Architecture

Web-based applications are set up on 1 server that can
be accessed directly by the user, where the database
is also separate from the web application server. From
this architecture, it is very prone to service downtime
because the system only runs on 1 machine. When
there is a hard were failure or a surge in requests from
users, the web application service will be down and
take time to recover.

Departing from this problem, it is necessary to design
a system that can minimize service downtime by
creating load-balancing-based clustering setups for

web applications and database clustering that
synchronizes between the nodes.

To build the design, additional servers are needed to
build this cluster system. The design to be built is as
follows:

Figure 6. High Availability System

From the above design, additional system
components are needed which are as follows:
1. 1 LB Server (Using Nginx Load Balancing)
On LB Server the domain and HTTPS connection are
set up. However, the request will be forwarded to the
application's HTTP service to the three application
server nodes behind it.
2. 3 Application Server.
These 3 servers store web-based applications from
system services that are the same as each other. With
the following setup:
• Application Server 1 is connected to the database
server 1,
• Application Server 2 is connected to database
server 2,
• Application Server 3 connects to database server
3
3. 3 MariaDB database servers
3 Server databases are set up clustering and
synchronize master-to-master between nodes.

Journal of Cyber Forensics and Security (CYFORS) ISSN 3032-5870
Vol.3, No.1 (2026)

SYSTEM IMPLEMENTATION

a.LB Server

Setup for the https service domain or port 443 with
the load balancing configuration as follows:

The load balancing configuration is contained in the
upstream backend function. Above it can be seen that
the algorithm used is the least connection and defines
all the nodes of the server application. In the
configuration, there is a process of checking the status
of the Node whether it is active or not in the following
configuration:

max_fails = 3 file_timeout=10s;

This means that the load balancer will continuously
check each node, if the node does not respond 3 times
and the duration is 10s, it means that the node is

declared down and the request will be forwarded to
another available node.

To reverse or forward requests that enter the LB
server to the application server is in the following
configuration:

proxy_pass http://backend;

b. Application Server

On the application server, only configuration for
HTTP port or port 80 is carried out as usual as needed.
The same configuration applies to all 3 active nodes
and the application must be the same between the 3
nodes of the server application. If there are updates or
changes to application 1, then these updates and
changes must also be made to server application 2 and
server application 3.

The above configuration applies to all setups on the
application server. Furthermore, for the configuration
of applications to databases, each application 1 is
connected to database 1, application 2 to database 2

Journal of Cyber Forensics and Security (CYFORS) ISSN 3032-5870
Vol.1, No.2 (2024)

and application 3 to database 3. To split the service
database load.

c. Database Server

Perform cluster galera configuration on 3 server
databases. The steps are as follows:

• Install the mariadb galera packet on the 3rd
database server

dnf install galley -y

• Backup and restore databases from existing
databases to other databases as nodes 2 and 3 galera
clusters.

• Setup the galera on node 1 of the database
server by adding the following configuration on the

/etc/my.cnf.d/server.cnf

Run the service galera cluster on node1 by running
the following command:

galera_new_cluster

Configure node2 and node 3 by adding The following
configuration on file /etc/my.cnf.d/server.dnf

Node2 DB server:

xxxxx
xx
xxxxxxxxxxx

Node 3 DB Server:

•
Start the MariaDB service node 2 and node 3 to
activate the server's database service.
systemctl start mysqld
•
Perform a synchronize database cluster check.
MariaDB [(none)]> show status as 'wsrep_%';

Journal of Cyber Forensics and Security (CYFORS) ISSN 3032-5870
Vol.3, No.1 (2026)

Figure 7. Clustering galera status results

Results and Discussion

For this High Avalailability System test, several
scenarios can be carried out and checks on the
application logs can be carried out.

1. Server Load Balancing Testing

Testing by shutting down one of the application
servers and testing the application's Web access via
a browser.

LB Server

From the ping results of the image above, it can be
seen that the application server 2 is detected down or
cannot be accessed by LB Server. However, in terms
of application, the application can still be accessed.

Figure 9. Testing application access after
Application server 2 is shut down.

Furthermore, it can also be seen from the application
access log, namely from the access_log log. Where it
can be seen that the request will still enter each
application from the incoming request on the LB
Server.

Figure 10. Access Log on Application 1

Figure 11. Access Log on Application 2

Figure 12. Access Log on Application 3

1. MariaDB Cluster Galera Testing
For testing the MariaDB cluster galera, it can be done
by checking through the monitoring tools from
maxscale.

Figure 13. Synchronized DB Node Monitor

Furthermore, it can also be powered off on one of the
DB nodes and checked for monitoring status

Figure 14. Monitor 1 Node DB Down

After the system is down on Node DB 2, the
application can still be accessed

Figure 15. The application can still be accessed if
Node2 DB is Down
However, this condition still requires monitoring and
bypassing or turning off the LB Server configuration
for clustering to Application Server 2. This is because
the application service is still detected by LB but
application 2 cannot access the DB Server. This is
because it does not create a Load balancer system for
its database as an application access to Clustering DB.
Next, check the sample data from the database
whether it is the same in each DB. This can be done
by running Query Select to display some of the last
data in each DB.

Journal of Cyber Forensics and Security (CYFORS) ISSN 3032-5870
Vol.1, No.2 (2024)

Figure 16. Query 10 The last data from one of the
app's log event tables.

From the results of the query executed on each DB
Node, it gets the exact same data output. And this
means that the database is actually set up in the cluster
and synchronized in real time.
If one of the DB nodes is dead or damaged, then it can
be powered on again with the same setup and service
as before. We can just start the database to get the DB
synchronized again into Clustering.

Conclusions and Suggestions

The implementation of the High Availability (HA)
system using Nginx as the load balancer and Galera
Cluster MariaDB as the backend database proves that
this technology is able to significantly increase the
availability of application services. Nginx as a load
balancer plays the role of efficiently distributing user
requests to the backend server using algorithms such
as Round Robin, Least Connections, or IP Hash,
which can be adjusted to the needs of the system.
Meanwhile, Galera Cluster provides synchronous
data replication to ensure consistency between nodes,
thus being able to maintain data integrity even if one
of the nodes fails.

Tests conducted show that this combination of
technology can handle traffic spikes with low
response times and minimize the risk of downtime
due to server failure. With this architecture, the
system is able to achieve an availability level that is
close to the modern SLA standard, which is a
minimum uptime of 99.95%. In addition, the
implementation of failover at the application and
database level allows the system to continue
operating normally despite an outage in one of the
components.

However, there are challenges in implementation,
such as complex configuration requirements and
consistent monitoring to ensure optimal performance.
For further development, the system can be improved
with the integration of real-time monitoring tools
such as Prometheus or Grafana for early detection of
anomalies, as well as failover automation using
devices such as Keepalived or HAProxy. And there is
still a need for development to build Load Balancing
in the MariaDB cluster gallery for application-to-
database communication via Load Balancing, so as to
also reduce manual failover activities on the LB side
of the application and can further increase the SLA
value of the application service.

Overall, the solutions implemented provide a solid
foundation for a reliable and scalable system. This
approach is particularly relevant for organizations
that prioritize application service continuity and
business sustainability, especially in the face of

technical challenges and cyberattacks in the digital
age.

References
[1] Bass, L., Clements, P., & Kazman, R. (2019).
Software architecture in practice (3rd ed.). Addison-
Wesley.

[2] Bhayangkara, D. S., & Ashari, W. M. (2024). The
effect of load balancing on DDoS attack mitigation
using NGINX. The Indonesian Journal of Computer
Science, 13(4), 4118–4127.
https://doi.org/10.33022/ijcs.v13i4.4118

[3] Crilly, L. (2021). Scaling MySQL with TCP load
balancing and Galera Cluster. NGINX (F5).
https://www.f5.com/company/blog/nginx/scaling-
mysql-tcp-load-balancing-nginx-plus-galera-cluster

[4] Huang, Y., Zhang, M., & Xu, K. (2021). High
availability and load balancing in distributed systems.
Springer. https://doi.org/10.1007/978-3-030-69132-4

[5] Ikramsyah, M. A., Seta, H. B., Isnainiyah, I. N., &
Theresiawati, T. (2025). Evaluating service quality in
NGINX load balancing: A comparative study of
round robin and least connection algorithms.
Informatics: Journal of Computer Science, 21(3).
https://doi.org/10.52958/iftk.v21i3.10796

[6] MariaDB Corporation. (2025). Load balancing in
MariaDB Galera Cluster.
https://mariadb.com/docs/galera-cluster/high-
availability/load-balancing/load-balancing-in-
mariadb-galera-cluster/

[7] NGINX, Inc. (2025). Configuring active-active
high availability and additional passive HA nodes.
https://docs.nginx.com/nginx/admin-guide/high-
availability/ha-keepalived-nodes/

[8] Prakasa, J. E. W., Hanani, A., & Hariri, F. R.
(2023). Improving Moodle performance using
HAProxy and MariaDB Galera Cluster. Applied
Information System and Management, 7(1), 1–10.
https://doi.org/10.15408/aism.v7i1.34871

[9] Setiawan, A., & Kansha, W. M. (2021). The
creation of a cluster database system using the Galera
Cluster at the IPB University Vocational School.
Journal of Applied Science: Information Vehicles and
Agricultural Technology Transfer, 11(2), 49–59.
https://doi.org/10.29244/jstsv.11.2.49-59

[10] Sibuea, S., Widodo, Y. B., & Khaliq, M. N.
(2024). The use of NGINX software as load balancing
web server clustering. Journal of Informatics and
Computer Technology, 10(1), 45–54.
https://doi.org/10.37012/jtik.v10i1.2184

[11] Sumarna, S., Nurdin, H., & Handono, F. W.

Journal of Cyber Forensics and Security (CYFORS) ISSN 3032-5870
Vol.3, No.1 (2026)

(2025). Planning N-clustering high availability web
server with load balancing and failover. Journal of
Engineering and Computer Science, 9(1), 22–30.

[12] Terence, J. K., & Nagaiah, M. V. (2024).
High availability database infrastructure with Galera
& HAProxy. International Journal for
Multidisciplinary Research, 6(6), 1–8.

[13] Severalnines AB. (2020). Using NGINX as
a database load balancer for Galera Cluster.
https://severalnines.com/blog/using-nginx-database-
load-balancer-galera-cluster/

[14] Hwang, K., Fox, G. C., & Dongarra, J.
(2013). Distributed and cloud computing: From
parallel processing to the Internet of Things. Morgan
Kaufmann.

[15] Kartikasari, D., & Nugroho, A. (2022).
Analysis of high availability system performance on
clustering-based web servers. Journal of Information
and Communication Technology, 14(2), 101–110.

[16] Rahman, F., & Pratama, R. (2023).
Implementation of failover and load balancing
systems to improve the availability of web services.
Journal of RESTI (Systems Engineering and
Information Technology), 7(3), 512–520.
https://doi.org/10.29207/resti.v7i3.4789

[17] Slesarev, A., Mikhailov, M., & Chernishev,
G. (2022). Benchmarking hashing algorithms for load
balancing in distributed database environments.
arXiv preprint. https://arxiv.org/abs/2211.00741

[18] Zhang, Q., Chen, M., & Li, Y. (2021).
Performance evaluation of load balancing algorithms
in high availability web systems. Journal of Cloud
Computing, 10(1), 1–14.
https://doi.org/10.1186/s13677-021-00257-4

