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Abstract 
Without sufficient effort, the development of a software project will be hindered and may even significantly fail, 
thus jeopardizing the quality of the software developers. Therefore, Software Effort Estimation (SEE) is a crucial 
activity in software engineering. Numerous studies have been conducted on SEE, resulting in a significant amount 
of new literature in a very short time. To gain a comprehensive understanding of current trends and frameworks 
in Software Effort Estimation (SEE) research, identifying the key areas of study is crucial. This research employed 
a systematic literature review (SLR) as a comprehensive approach to uncovering and analyzing all the prominent 
research topics within this domain. Six research topics were identified from 60 journals, including algorithmic 
techniques, machine learning implementation, statistical approaches, expert judgment, dataset analysis, and 
metric evaluation. The algorithmic techniques and machine learning approaches are the most frequently discussed 
topics 
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Introduction 
In software engineering, estimating software 
development effort and costs is crucial for the success 
of a project. Both overestimation and underestimation 
pose problems for future software development. [1]. 
Software Development Effort Estimation (SDEE), 
also referred to as Software Effort Estimation (SEE) 
or various synonymous terms such as cost estimation, 
cost prediction, time estimation, and effort prediction 
[2]. Initially, software applications were confined to 
the domains of data processing and scientific 
computing. However, the past few decades have seen 
significant growth in software applications across 
various domains such as healthcare, food, and defense 
[3]. The 2020 Standish Report stated that only 31% 
of all software projects were successful, while 50% 
faced challenges [4]. In recent years, various SEE 
techniques have been classified and widely used [5], 
categorized into six groups: expert judgment 
methods, such as the Delphi technique [6] parametric 
models, such as the Constructive Cost Model 
(COCOMO) [7]; regression-based methods [8]; 
machine learning techniques [9]; analogy-based 
estimation [10]; and dynamic-based models [11]. 
Expert judgment methods include the Delphi 
technique, a structured communication technique. 
Parametric models, like COCOMO, use 
mathematical algorithms to calculate costs and effort. 
Input variables and project costs are connected 
through regression- based methods using statistical 
techniques [12]. A review article on SEE by Rashid 
[13] discusses the widely used frameworks in SEE, 
highlighting the advantages and disadvantages 
associated with using these frameworks. Carbonera et 
al. [6] present a comprehensive review of SEE 
approaches, identifying research gaps, challenges, 
and trends. A total of 120 primary studies were 

selected, analyzed, and categorized after a meticulous 
screening process from a sample of 3746 candidate 
studies to answer six research questions. Another 
study revealed that among 52 papers on recent 
research trends related to SEE, Artificial Neural 
Network (ANN) models and Constructive Cost 
Model (COCOMO)- based approaches have become 
the preferred techniques [14], underscoring the 
importance of cost and effort estimation in software 
development. Jadhav et al. [15] proposed a generic 
automated text mining framework to investigate 
research trends by analyzing the titles, keywords, and 
abstracts of 1015 selected research papers on 
Software Development Effort and Cost Estimation 
(SDECE) published over the past five decades. To 
update the summary of all papers from the preset 
search directory on SEE from 2020 to 2024, this 
research employs a systematic literature review 
(SLR). A systematic literature review (SLR) is a 
method for discovering, evaluating, and 
understanding all available research on a specific 
subject [16].  

Research Methods 
A. Review Method 
A Systematic Literature Review (SLR), a well-known 
review method in the field of software engineering, is 
defined as the process of collecting, evaluating, and 
analyzing all existing research evidence to answer 
specific research questions [17]. This literature 
review was conducted following the guidelines for 
systematic literature reviews proposed by 
Kitchenham et al. [18]. 
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Fig. 1. Systematic Literature Review Steps 
As shown in Figure 1, an SLR is conducted in three 
stages: planning, execution, and reporting the review 
results. The first step is to establish criteria for the 
systematic review (Step 1). A review protocol is 
developed to organize the review's execution and 
minimize researcher bias (Step 2). This protocol 
includes the formulation of research questions, search 
strategies, study selection process with inclusion and 
exclusion criteria, quality assessment, and the data 
extraction and synthesis process. 
B. Research Questions 
In scientific research, questions serve many important 
functions. They guide the research and ensure that the 
researcher focuses on relevant and specific aspects of 
the topic or issue under review [19]. The PICOC 
framework (Population, Intervention, Comparison, 
Outcome, and Context), previously applied by 
Abusaeed [20] and Diego [21] as a reference for SLR 
research, is used to develop research questions. 
Research questions are created using the PICOC 
platform, and relevant keywords for searching 
primary studies on SEE are identified. Table 1 
illustrates the PICOC structure used. 

Table 1. PICOC CRITERIA 
PICOC Detail 

Population Research focusing on Software Effort 
Estimation (SEE) 

Intervention  Analysis of research trends and topics 
discussed in SEE-related publications. 

Comparison   No explicit comparison is made in this 
context as the primary goal is to identify and 
analyze trends. 

 
Outcome 

  Identification of research trends in SEE over      
the past five years (2020-2024). 
Analysis of the most frequently discussed 
topics in SEE research. 

 
Context 

Scientific publications, including journals, 
conferences, and papers published between 
2020 and 2024. 

 

After establishing the PICOC framework, various 
research questions have been identified along with 
their respective objectives, as illustrated in Table 2. 

Table II. RESEARCH QUESTION 
ID Research Question Motivation 
 
 
RQ1 

What have been the research 
trends in SEE over the 
past five years and what 
topics have been most 
discussed? 

To discover SEE research 
trends from 2020 to 
2024 and analyze the 
most discussed topics 
in SEE research. 

 
 
RQ2 

What research issues, 
methods, and datasets 
have been explored in 
SEE? 

The focus of this question 
is to analyze and 
explored research 
isseus, methods, and 
datasets datasets have 
been widely used in 
SEE 

 
C. Research Strategy 
The process of determining keywords begins by 
referring to terms originating from the PICOC 
framework, especially from the "Population" and 
"Intervention" sections. The next step is to extract 
relevant terms from the research question and look for 
words that have the same or similar meaning. 
“(software OR system) AND (effort OR cost) AND 
(predicted OR machine learning OR estimating OR 
estimation OR strategy)” are keywords that are 
generated by using logical operators to get the 
appropriate results. There are several digital scientific 
databases, such as Science Direct, IEEE, Springer, 
and Wiley, searched with these keywords. The focus of 
this research is English-language Q1 and Q2 journals 
published between 2020 and 2024 
D. Inclusion and Exclusion Criteria 
The selection of primary studies for this research 
involved a meticulous process of defining inclusion 
and exclusion criteria. Inclusion criteria encompassed 
full-length journal and conference papers, as well as 
research publications specifically focused on SEE. 
Conversely, exclusion criteria eliminated non-
scientific publications and works that addressed cost 
estimation beyond the scope of this research, such as 
those unrelated to software engineering. From this 
selection process, 60 primary studies were identified 
and chosen. Based on titles and abstracts, the search 
results from the search strategy were manually re-
screened, with the criteria for inclusion and exclusion 
shown in Table 3. Only journal papers were selected 
after the peer-review assessment. 

Table III. INCLUSION AND EXCLUSION CRITERIA 
Selection Criteria 
Inclusion Journal Paper Public Available or Private 

Exclusion      Conference paper, review, survey, book 
chapter, and comparative study The 
topic outrange of SEE 

 
After identifying relevant studies through search 
results and manual selection (Figure 2), the research 
process moved to data extraction and synthesis. Data 
extraction involved meticulously gathering all the 
information needed to answer the research questions. 
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This could include details like methodologies, results, 
and conclusions from the selected studies. Data 
synthesis then built upon this extracted information. 
It involved analyzing the findings across all the 
included studies and grouping them into key research 
themes. Through this process, the research was able 
to identify and categorize the most significant topics 
explored within the field of SEE. 

 

Fig. 2. Search and Selection of Primary Studies 

Results and Discussion 
This section explores the key findings gleaned from 
the reviewed papers, directly addressing the two 
research questions we set out to answer. To ensure the 
review's rigor, we focused on papers published in 
high-impact Q1 and Q2 journals. As seen in Figure 3, 
the number of SEE-related publications has steadily 
increased from 2020 to 2024, with a total of 60 papers 
identified within this timeframe. 

 

Fig. 3. Paper publication 
 
A. Research Trends 
To address RQ1, the authors identified six research 
topics, which are represented in Table 4. The most 
frequently discussed topic is the algorithm technique 

approach with 27 papers, followed by machine 
learning implementation with 25 papers, statistical 
approach with 11 papers, expert judgment with 8 
papers, dataset analysis with 5 papers, and finally 3 
papers on matrix evaluation. 

TABLE IV. SIX RESEARCH TOPICS 
ID Research Topics Number of 

Paper 
References 

 

RT1 

 

Machine Learning 
Implementation 

 

25 

[11], [12], [22], [23], [24], 
[25], [26], [27], [28], [29], 
[30], [31], [32], [33], [34], 
[35], [36], [37], [38], [39], 
[40], [41], [42], [43], [44] 

RT2 Dataset analysis 6 [45], [46], [47], [47], [48], 
[49] 

 
RT3 

 
StatisticalApproach 

 
11 

[37], [38], [44], [47], [48], 
[50], [51], [52], [53], [54], 
[55] 

RT4 Evaluation Matric 3 [3], [56], [57] 
 
 
RT5 

 

Algoritmic 
Technique 

 

27 

[10], [11], [11], [14], [20], 
[27], [31], [32], [33], [34], 
[35], [37], [38], [47], [53], 
[58], [59], [60], [61], [62], 
[63], [64], [65], [66], [67], 
[68], [69] 

RT6 Expert Judgement 8 [49], [55], [65], [66], [70], 
[71], [72], [73] 

 
The implementation of machine learning (RT1) for 
SEE has been extensively explored by researchers. 
The number of papers published on this research topic 
from 2020 to 2024 is 25. As depicted in Figure 4, this 
data indicates fluctuations in the number of studies, 
which could be attributed to technological 
advancements and researcher interest during that 
period. 

 

The most widely explored topics include Extreme 
Learning Machine (ELM) ,Deep Neural Network 
(DNN) [23], Artificial Neural Network (ANN) [24], 
hybrid model [27], [11], ensemble learning [27], dan 
Deep Learning [32]. Rankovic et al. [40] compared 
different GNN models (LSTM, GGNN, GGSNN) 
with various settings and analyzed the results using 
SHAP, achieving a balance between efficiency and 
accuracy using the Taguchi optimization method. 
Additionally, there are opportunities for further 
studies on the challenges of identifying reliable 
machine learning approaches for software 
development effort estimation. Statistical approaches 
(RT4) play a crucial role in SEE, providing robust 
methods for predicting the time and resources 
required to complete a project. Numerous studies 
have been conducted in this area, includingAlqasrawi 
et al. [50] which employed Locally weighted 
regression (LWR) with different kernels, followed by 
estimation models using a trained embedding model 
[51], multiple linear regression [52], and cluster 
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analysis [54]. Further research can explore other 
statistical approaches such as classification and 
association analysis. Three papers were successfully 
summarized, including J. A. Khan et al. [23] which 
achieved the best results using MMRE and Pred(25) 
on eight attributes, security matrix evaluation in SEE 
[57], and [3] which identified MMRE, PRED, and 
RMSE as the three most popular performance 
metrics. Research on evaluation metrics (RT4) has 
not been extensively discussed in recent years, but it 
remains an important area for exploration. 
 
B. Research issues, methods, and datasets in SEE 
Various studies have been conducted by researchers 
to answer this problem on RQ2, further issues related 
to the evaluation matrix in SEE, three papers were 
successfully summarized, including J. A. Khan et al. 
[23] which achieved the best results using MMRE 
and Pred(25) on eight attributes, security matrix 
evaluation in SEE [57], and [3] which identified 
MMRE, PRED, and RMSE as the three most popular 
performance metrics. Research on evaluation metrics 
(RT4) has not been extensively discussed in recent 
years, but it remains an important area for 
exploration. In (RT2), six papers were found to 
discuss dataset analysis. This will also discuss RQ2. 
No discussion of this topic was found in 2021, 2022, 
and 2024. It was observed that all datasets were 
public, and the identified topics included data 
comparison [45], feature selection [46], [47], feature 
relevance [47], data size [48], and dataset quality 
[49]. The limitations of dataset availability remain an 
interesting trend for further research, especially in the 
area of feature selection. Other potential topics for 
further exploration include: Methods for improving 
feature elimination in datasets, and Synthetic data 
augmentation for software development effort 
estimation. Algorithmic techniques (RT5) for SEE 
are the most extensively researched issues and 
method in this SLR. There were 27 papers published 
on this topic from 2020 to 2024. As can be seen in 
Figure 5, the most research was conducted in 2023 
with 12 papers, indicating that algorithmic techniques 
remain a highly interesting area for further analysis in 
recent years. 

 

Fig. 5. Algorithmic Technique 
Among the numerous algorithms employed for SEE, 
Artificial Bee Colony [47], [59] is the most frequently 
discussed trend topic. However, other trends in 
algorithmic techniques include Dolphin Algorithm 
[58], Particle Swarm Optimization [61], fuzzy C-
means [62], dimensional success factors [63], wavelet 
neural network and metaheuristic algorithm [27], 

CoGEE [64], Fuzzy AHP [20], genetic algorithm 
[31], Use Case Points [66], Advanced Bayesian 
Network [37], function point [67], TSoptEE [68], and 
finally Self-Organizing Migration [14]. The two 
papers that implemented the Bee Colony algorithm 
took different approaches. The first paper, by 
Matsubara et al. [47] proposed binary artificial bee 
colony based feature selection (BAFS), and the 
authors stated that the Binary Artificial Bee Colony-
based Feature Selection (BAFS) method outperforms 
existing feature selection models and regression 
techniques in terms of software development effort 
estimation performance. BAFS employs four 
regression models (Linear, LASSO, Ridge, 
ElasticNet) for more effective feature selection. Shah 
et al. [59] discussed Ensembling Artificial Bee 
Colony With Analogy-Based (BABE), and the 
authors stated that the model improves estimation 
performance compared to previous models, 
particularly on the International Software 
Benchmarking Standards Group (ISBSG) dataset. 
Future research could explore combining Artificial 
Bee Colony (ABC) with other estimation techniques 
besides Analogy-Based Estimation. This could 
involve integrating ABC with regression techniques, 
machine learning methods, or other analytical 
approaches to investigate whether such combinations 
can produce more accurate or efficient results. Expert 
judgment (RT6) also plays a prominent role in SEE 
research, encompassing task size-based estimation 
[70], analogy-based estimation [71], [65], developer 
experience , SMO [55], and UCP [66]. Iqbal et al. [49] 
shed light on issues in SEE using story-based 
estimation, identifying internal factors such as 
communication, team expertise, and team 
composition as crucial determinants of estimation 
accuracy. The authors emphasize the importance of 
considering the interplay of various aspects, including 
team dynamics, task complexity, and task 
engineering practices, to achieve accurate estimation. 
Further research opportunities can focus on 
standardizing estimation protocols and leveraging 
supporting technologies for SEE. 

Conclusions and Recommendations 
This study guided a systematic literature review 
to identify current trends in Software Effort 
Estimation (SEE) research. The review process 
involved a comprehensive analysis of 60 
academic journals published among 2020 and 
2024. The findings revealed a clear focus on 
leveraging computational techniques for SEE. 
The six most prevalent research topics, in 
descending order of popularity, reflected this 
trend:  
1. Algorithmic Techniques (27 papers): This 

field examines various algorithms, including 
the Artificial Bee Colony and genetic 
algorithms, to automate the estimation 
process and potentially enhance accuracy.  
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2. Machine Learning Implementation (25 
papers): This research direction explores the 
use of machine learning models, such as 
Deep Learning and Support Vector 
Machines, to learn from historical data and 
provide more accurate effort estimations.  

3. Statistical Approach (11 papers): This 
traditional approach applies statistical 
methods, like linear regression and cluster 
analysis, to identify relationships between 
project characteristics and effort 
requirements.  

4. Expert Judgment (8 papers): This area 
recognizes the importance of human 
expertise in software effort estimation (SEE) 
and investigates techniques such as story-
based estimation, which leverage the 
knowledge and experience of software 
development teams.  

5. Dataset Analysis (6 papers): Although fewer 
studies exist in this area, it underscores the 
importance of high-quality data for training 
computational models to achieve accurate 
SEE. Research focuses on data cleaning, 
feature selection, and identifying potential 
biases.  

6. Evaluation Metrics (3 papers): This less 
explored area is essential for evaluating the 
effectiveness of different SEE approaches. 
Research here focuses on developing and 
applying appropriate metrics to assess the 
accuracy and efficiency of estimation 
methods.  

 
The observed dominance of computational 
techniques suggests a growing interest in automating 
and potentially improving the accuracy of SEE. 
However, the continued exploration of traditional 
approaches and the importance of human expertise 
and data quality demonstrate the need for a 
comprehensive research landscape that considers 
various facets of SEE. 
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