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Abstract
Without sufficient effort, the development of a software project will be hindered and may even significantly fail,
thus jeopardizing the quality of the software developers. Therefore, Software Effort Estimation (SEE) is a crucial
activity in software engineering. Numerous studies have been conducted on SEE, resulting in a significant amount
of new literature in a very short time. To gain a comprehensive understanding of current trends and frameworks
in Software Effort Estimation (SEE) research, identifying the key areas of study is crucial. This research employed
a systematic literature review (SLR) as a comprehensive approach to uncovering and analyzing all the prominent
research topics within this domain. Six research topics were identified from 60 journals, including algorithmic
techniques, machine learning implementation, statistical approaches, expert judgment, dataset analysis, and
metric evaluation. The algorithmic techniques and machine learning approaches are the most frequently discussed

topics
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Introduction

In software engineering, estimating software
development effort and costs is crucial for the success
of'a project. Both overestimation and underestimation
pose problems for future software development. [1].
Software Development Effort Estimation (SDEE),
also referred to as Software Effort Estimation (SEE)
or various synonymous terms such as cost estimation,
cost prediction, time estimation, and effort prediction
[2]. Initially, software applications were confined to
the domains of data processing and scientific
computing. However, the past few decades have seen
significant growth in software applications across
various domains such as healthcare, food, and defense
[3]. The 2020 Standish Report stated that only 31%
of all software projects were successful, while 50%
faced challenges [4]. In recent years, various SEE
techniques have been classified and widely used [5],
categorized into six groups: expert judgment
methods, such as the Delphi technique [6] parametric
models, such as the Constructive Cost Model
(COCOMO) [7]; regression-based methods [8];
machine learning techniques [9]; analogy-based
estimation [10]; and dynamic-based models [11].
Expert judgment methods include the Delphi
technique, a structured communication technique.
Parametric  models, like COCOMO, use
mathematical algorithms to calculate costs and effort.
Input variables and project costs are connected
through regression- based methods using statistical
techniques [12]. A review article on SEE by Rashid
[13] discusses the widely used frameworks in SEE,
highlighting the advantages and disadvantages
associated with using these frameworks. Carbonera et
al. [6] present a comprehensive review of SEE
approaches, identifying research gaps, challenges,
and trends. A total of 120 primary studies were

selected, analyzed, and categorized after a meticulous
screening process from a sample of 3746 candidate
studies to answer six research questions. Another
study revealed that among 52 papers on recent
research trends related to SEE, Artificial Neural
Network (ANN) models and Constructive Cost
Model (COCOMO)- based approaches have become
the preferred techniques [14], underscoring the
importance of cost and effort estimation in software
development. Jadhav et al. [15] proposed a generic
automated text mining framework to investigate
research trends by analyzing the titles, keywords, and
abstracts of 1015 selected research papers on
Software Development Effort and Cost Estimation
(SDECE) published over the past five decades. To
update the summary of all papers from the preset
search directory on SEE from 2020 to 2024, this
research employs a systematic literature review
(SLR). A systematic literature review (SLR) is a
method  for  discovering, evaluating, and
understanding all available research on a specific
subject [16].

Research Methods
A. Review Method

A Systematic Literature Review (SLR), a well-known
review method in the field of software engineering, is
defined as the process of collecting, evaluating, and
analyzing all existing research evidence to answer
specific research questions [17]. This literature
review was conducted following the guidelines for
systematic  literature  reviews proposed by
Kitchenham et al. [18].
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After establishing the PICOC framework, various
research questions have been identified along with
their respective objectives, as illustrated in Table 2.

Table II. RESEARCH QUESTION
Step 1 Identify the Need Step 4 Perform Searches 1)} Research Question Motivation
for a Literature Review related to Topics -
What have been the research [To discover SEE research
l { trends in SEE over the trends from 2020 to
Step 2 Set Review Step 5: Selecting Primary RQ1 past five years and what 2024 and analyze the

Protocol Studies

topics have been most
discussed?

most discussed topics
] ! in SEEresearch.

Step 3 Protocol Step 6 Extracting Dat What  research  issues, [The focus of this question
Evaluation i AEEREE :

methods, and datasets is to analyze and
have been explored in explored research
SEE? isseus, methods, and
datasets datasets have
been widely used in

i IRQ2

Step 7: Assessing the
Quality of Primary Studies

Step 8 : Synthesize Data Step 9 : Publishing Results

Fig. 1. Systematic Literature Review Steps

As shown in Figure 1, an SLR is conducted in three
stages: planning, execution, and reporting the review
results. The first step is to establish criteria for the
systematic review (Step 1). A review protocol is
developed to organize the review's execution and
minimize researcher bias (Step 2). This protocol
includes the formulation of research questions, search
strategies, study selection process with inclusion and
exclusion criteria, quality assessment, and the data
extraction and synthesis process.

B. Research Questions

In scientific research, questions serve many important
functions. They guide the research and ensure that the
researcher focuses on relevant and specific aspects of
the topic or issue under review [19]. The PICOC
framework (Population, Intervention, Comparison,
Outcome, and Context), previously applied by
Abusaeed [20] and Diego [21] as a reference for SLR
research, is used to develop research questions.
Research questions are created using the PICOC
platform, and relevant keywords for searching
primary studies on SEE are identified. Table 1
illustrates the PICOC structure used.

Table 1. PICOC CRITERIA

PICOC Detail
Populati Research focusing on Software Effort
opufation Estimation(SEE)
. |Analysis of research trends and topics
Intervention

discussed in SEE-related publications.

No explicit comparison is made in this
context asthe primary goal is to identify and
analyze trends.

Identification of research trends in SEE over
thepast five years (2020-2024).

|Analysis of the most frequently discussed
topics in SEE research.

Scientific publications, including journals,
Context conferences, and papers published between
2020 and 2024.

Comparison

Outcome

SEE

C. Research Strategy

The process of determining keywords begins by
referring to terms originating from the PICOC
framework, especially from the "Population" and
"Intervention" sections. The next step is to extract
relevant terms from the research question andlook for
words that have the same or similar meaning.
“(software OR system) AND (effort OR cost) AND
(predictedOR machine learning OR estimating OR
estimation OR strategy)” are keywords that are
generated by using logical operators to get the
appropriate results. There are several digital scientific
databases, such as Science Direct, IEEE, Springer,
and Wiley, searched with these keywords. The focusof
this research is English-language Q1 and Q2 journals
published between 2020 and 2024

D. Inclusion and Exclusion Criteria

The selection of primary studies for this research
involved a meticulous process of defining inclusion
and exclusion criteria. Inclusion criteria encompassed
full-length journal and conference papers, as well as
research publications specifically focused on SEE.
Conversely, exclusion criteria eliminated non-
scientific publications and works that addressed cost
estimation beyond the scope of this research, such as
those unrelated to software engineering. From this
selection process, 60 primary studies were identified
and chosen. Based on titles and abstracts, the search
results from the search strategy were manually re-
screened, with the criteria for inclusion and exclusion
shown in Table 3. Only journal papers were selected
after the peer-review assessment.

Table I1I. INCLUSION AND EXCLUSION CRITERIA

Selection Criteria

Inclusion Journal Paper Public Available or Private

[Exclusion Conference paper, review, survey, book
chapter, and comparative study The

topic outrange of SEE

After identifying relevant studies through search
results and manual selection (Figure 2), the research
process moved to data extraction and synthesis. Data
extraction involved meticulously gathering all the
information needed to answer the research questions.
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This could include details like methodologies, results,
and conclusions from the selected studies. Data
synthesis then built upon this extracted information.
It involved analyzing the findings across all the
included studies and grouping them into key research
themes. Through this process, the research was able
to identify and categorize the most significant topics
explored within the field of SEE.

SCIENDIRECT SPRINGER
(356) (108)

|

ISSN 3032-5870

approach with 27 papers, followed by machine
learning implementation with 25 papers, statistical
approach with 11 papers, expert judgment with 8
papers, dataset analysis with 5 papers, and finally 3
papers on matrix evaluation.

TABLE IV. SIX RESEARCH TOPICS

e N
Number of initial primary studies successfully retrieved
(1002)

N\ 1 J
e N
Exclusion of primary studies based on Title
(656)

N 1 J
e N
Exclusion of primary studies based on Abstract
(303)

- l J
e N
Exclusion of primary studies based on Full Text
(132)

N 1 J
e N
Selecting Q1 dan Q2 Jurnal
(87)

AN l J
s N
The total number of primary studies included
(60)

AN J

Fig. 2. Search and Selection of Primary Studies

Results and Discussion

This section explores the key findings gleaned from
the reviewed papers, directly addressing the two
research questions we set out to answer. To ensure the
review's rigor,we focused on papers published in
high-impact Q1 and Q2 journals. As seen in Figure 3,
the number of SEE-related publications has steadily
increased from 2020 to 2024, with atotal of 60 papers
identified within this timeframe.
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Fig. 3. Paper publication

A. Research Trends

To address RQ1, the authors identified six research
topics,which are represented in Table 4. The most
frequently discussed topic is the algorithm technique

D Research Topics |Numberof References
Paper
[11], [12], [22], [23], [24],
[25], [26], [27], [28], [29],
RT1 |Machine Learning 25 [30], [31], [32], [33], [34],
Implementation [35], [36], [37], [38], [39],
[40], [41], [42], [43], [44]
Ry [Dataset analysis 6 E‘ig%, [46], [47], [47], [48],
[37], [38], [44], [47], [48],
RT3 StatisticalApproach| 11 (501, [51], [521, [53], [541,
[55]
RT4 [Evaluation Matric 3 [3], [56], [57]
[10], [11], [11], [14], [20],
[27], [31], [32], [33], [34],
rys  Algoritmic 27 (351, [37], [38], [47], [531,
Technique [58], [59], [60], [61], [62],
[63], [64], [65], [66], [67],
[68], [69]
[Expert Judgement 8 [49], [55], [65], [66], [70],
RT6 [71], [72], [73]

The implementation of machine learning (RT1) for
SEE has been extensively explored by researchers.
The number of papers published on this research topic
from 2020 to 2024 is 25. As depicted in Figure 4, this
data indicates fluctuations in the number of studies,
which could be attributed to technological
advancements and researcher interest during that
period.
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n

The most widely explored topics include Extreme
Learning Machine (ELM) ,Deep Neural Network
(DNN) [23], Artificial Neural Network (ANN) [24],
hybrid model [27], [11], ensemble learning [27], dan
Deep Learning [32]. Rankovic et al. [40] compared
different GNN models (LSTM, GGNN, GGSNN)
with various settings and analyzed the results using
SHAP, achieving a balance between efficiency and
accuracy using the Taguchi optimization method.
Additionally, there are opportunities for further
studies on the challenges of identifying reliable
machine learning approaches for software
development effort estimation. Statistical approaches
(RT4) play a crucial role in SEE, providing robust
methods for predicting the time and resources
required to complete a project. Numerous studies
have been conducted in this area, includingAlqasrawi
et al. [50] which employed Locally weighted
regression (LWR) with different kernels, followed by
estimation models using a trained embedding model
[51], multiple linear regression [52], and cluster
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analysis [54]. Further research can explore other
statistical approaches such as classification and
association analysis. Three papers were successfully
summarized, including J. A. Khan et al. [23] which
achieved the best results using MMRE and Pred(25)
on eight attributes, security matrix evaluation in SEE
[57], and [3] which identified MMRE, PRED, and
RMSE as the three most popular performance
metrics. Research on evaluation metrics (RT4) has
not been extensively discussed in recent years, but it
remains an important area for exploration.

B. Research issues, methods, and datasets in SEE
Various studies have been conducted by researchers
to answer this problem on RQ?2, further issues related
to the evaluation matrix in SEE, three papers were
successfully summarized, including J. A. Khan et al.
[23] which achieved the best results using MMRE
and Pred(25) on eight attributes, security matrix
evaluation in SEE [57], and [3] which identified
MMRE, PRED, and RMSE as the three most popular
performance metrics. Research on evaluation metrics
(RT4) has not been extensively discussed in recent
years, but it remains an important area for
exploration. In (RT2), six papers were found to
discuss dataset analysis. This will also discuss RQ?2.
No discussion of this topic was found in 2021, 2022,
and 2024. It was observed that all datasets were
public, and the identified topics included data
comparison [45], feature selection [46], [47], feature
relevance [47], data size [48], and dataset quality
[49]. The limitations of dataset availability remain an
interesting trend for further research, especially in the
area of feature selection. Other potential topics for
further exploration include: Methods for improving
feature elimination in datasets, and Synthetic data
augmentation for software development effort
estimation. Algorithmic techniques (RTS) for SEE
are the most extensively researched issues and
method in this SLR. There were 27 papers published
on this topic from 2020 to 2024. As can be seen in
Figure 5, the most research was conducted in 2023
with 12 papers, indicating that algorithmic techniques
remain a highly interesting area for further analysis in
recent years.
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Fig. 5. Algorithmic Technique

Among the numerous algorithms employed for SEE,
Artificial Bee Colony [47], [59] is the most frequently
discussed trend topic. However, other trends in
algorithmic techniques include Dolphin Algorithm
[58], Particle Swarm Optimization [61], fuzzy C-
means [62], dimensional success factors [63], wavelet
neural network and metaheuristic algorithm [27],

CoGEE [64], Fuzzy AHP [20], genetic algorithm
[31], Use Case Points [66], Advanced Bayesian
Network [37], function point [67], TSoptEE [68], and
finally Self-Organizing Migration [14]. The two
papers that implemented the Bee Colony algorithm
took different approaches. The first paper, by
Matsubara et al. [47] proposed binary artificial bee
colony based feature selection (BAFS), and the
authors stated that the Binary Artificial Bee Colony-
based Feature Selection (BAFS) method outperforms
existing feature selection models and regression
techniques in terms of software development effort
estimation performance. BAFS employs four
regression models (Linear, LASSO, Ridge,
ElasticNet) for more effective feature selection. Shah
et al. [59] discussed Ensembling Artificial Bee
Colony With Analogy-Based (BABE), and the
authors stated that the model improves estimation
performance compared to previous models,
particularly on the International Software
Benchmarking Standards Group (ISBSG) dataset.
Future research could explore combining Artificial
Bee Colony (ABC) with other estimation techniques
besides Analogy-Based Estimation. This could
involve integrating ABC with regression techniques,
machine learning methods, or other analytical
approaches to investigate whether such combinations
can produce more accurate or efficient results. Expert
judgment (RT6) also plays a prominent role in SEE
research, encompassing task size-based estimation
[70], analogy-based estimation [71], [65], developer
experience , SMO [55], and UCP [66]. Igbal et al. [49]
shed light on issues in SEE using story-based
estimation, identifying internal factors such as
communication, team  expertise, and team
composition as crucial determinants of estimation
accuracy. The authors emphasize the importance of
considering the interplay of various aspects, including
team dynamics, task complexity, and task
engineering practices, to achieve accurate estimation.
Further research opportunities can focus on
standardizing estimation protocols and leveraging
supporting technologies for SEE.

Conclusions and Recommendations

This study guided a systematic literature review

to identify current trends in Software Effort

Estimation (SEE) research. The review process

involved a comprehensive analysis of 60

academic journals published among 2020 and

2024. The findings revealed a clear focus on

leveraging computational techniques for SEE.

The six most prevalent research topics, in

descending order of popularity, reflected this

trend:

1. Algorithmic Techniques (27 papers): This
field examines various algorithms, including
the Artificial Bee Colony and genetic
algorithms, to automate the estimation
process and potentially enhance accuracy.
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2.

The

Machine Learning Implementation (25
papers): This research direction explores the
use of machine learning models, such as
Deep Learning and Support Vector
Machines, to learn from historical data and
provide more accurate effort estimations.
Statistical Approach (11 papers): This
traditional approach applies statistical
methods, like linear regression and cluster
analysis, to identify relationships between
project characteristics and effort
requirements.

Expert Judgment (8 papers): This area
recognizes the importance of human
expertise in software effort estimation (SEE)
and investigates techniques such as story-
based estimation, which leverage the
knowledge and experience of software
development teams.

Dataset Analysis (6 papers): Although fewer
studies exist in this area, it underscores the
importance of high-quality data for training
computational models to achieve accurate
SEE. Research focuses on data cleaning,
feature selection, and identifying potential
biases.

Evaluation Metrics (3 papers): This less
explored area is essential for evaluating the
effectiveness of different SEE approaches.
Research here focuses on developing and
applying appropriate metrics to assess the
accuracy and efficiency of estimation
methods.

observed dominance of computational

techniques suggests a growing interest in automating
and potentially improving the accuracy of SEE.
However, the continued exploration of traditional
approaches and the importance of human expertise
and data quality demonstrate the need for a
comprehensive research landscape that considers
various facets of SEE.
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